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Abstract. We have calculated positron lifetimes in different bulk materials using the
LMTO (linear muffin-tin orbitals) method. Electron—positron correlation effects have been
included in the calculation through the enhancement factor calculated within the local
density approximation (LDA) by Jarlborg and Singh. Following Jensen and Puska, we
apply the enhancement factor identically to all electrons (valence and core), making the
approach very general. The overall agrzement between the calculated bulk lifetimes and
the corresponding experimental values is especially good in the case of 3d transition
metals. These calculations constitute a good test for the application of the method to
angular correlation data analysis.

1. Intreduction

In the calculations of positron annihijlation rates, the introduction of electron—positron
correlation effects describes the screening charge of the electrons around the positron.
The enhancement factor is given by the amplitude of the electron density on the
positron site. As the screening length is usually short, this enhancement factor can be
well described in a local density approximation (LDA). In this scheme, the pile-up of
the electrons corresponds to a homogeneous electron gas with a density depending
on the unperturbed electron density at the position of the positron. It turns out that,
in spite of strong enhancement, the momentum density p*7(p) seen by the positron
is reasonably well described by the independent-particle model (IPM) approximation.
Moreover the position of the discontinuities in p?7(p) due to the Fermi surface is not
shifted by the electron—positron (e~-et) correlation effects (Majumdar 1965). On
the other hand, the calculated positron lifetimes are very sensitive to the enhancement
term and so constitute a crucial test for the theory.

Several models for the e~—et interaction in the jellium have been proposed. In
each case, the basic idea is to consider that the positron polarizes the homogenous
electron gas of density n, leading to a net increase of the electronic density at the
site of the positron to n + An. The enhancement factor is then defined as

v=14+An/n. 0

As a function of the electron-gas parameter r, (defined as (4/3)mr? = 1 /n), Brandt
and Reinheimer (1971) have proposed for « the following expression obtained in the
RPA:

= 1+(r3+10)/6. {2)
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This enhancement factor is valid in the range 2 £ r, £ 6. Using another theory (bo-
son formalism}, Arponen and Pajanne (1979) have described the coliective excitations
due to a positron immersed in a homogenous electron gas together with the electronic
density around the positron. The theory of the Fermi liquid in the hypernetted-chain
(HNC) approximation has been used by Kallio et al (1982) to study the problem of
a charged impurity in the electron gas. This theory has been further improved by
Gondzik and Stachowiak (1985) for the positron case. Very similar to the Brandt-
Reinheimer formula is the expression proposed by Boronski and Nieminen (1985),
interpolated from Fermi liquid results (Chakraborty and Pietildinen 1982):

¥ =1+ 1.23r, + 0.82957%/? — 1.26:2 4 0.328675/% + % . (3)

Jarlborg and Singh (1987) have obtained their enhancement factor by solving a two-
body ¢~—et Schrodinger equation inside a spherical correlation cell. This model
has already been tested by comparison with experimental 2D ACAR (two-dimensional
angular correlation of the annihilation radiation) distributions. Analysis of ACAR
data has also motivated the introduction of more general enhancement factors which
include momentum or energy dependence (Sormann and Puff 1985, Daniuk ef al
1987, Jarlborg ef al 1991). These factors are derived from the well known Kahana
(1963) formalism based on the resolution of Bethe-Goldstone equations.

As mentioned above, the Jarlborg-Singh approach for the e~-¢* correlation
effects has been confronted with 2D ACAR experimental data. But the influence of
these effects is less pronounced in ACAR than in Jifetime calculations. Moreover
ACAR data consist of relative distributions which prevent an unambiguous scaling of
the enhancement factor. To get an initial test of this approach, which is a parameter-
free and computationally efficient method, we have performed lifetime calculations,
starting from simple materials and then generalizing to more complicated compounds,
keeping the same enhancement factor for all electrons (including the core electrons).

2. Method

In the present local density scheme, the positron annihilation rate A = 1/ can be
expressed as an overlap between the positron and the electron density through the
simple relation (see for example Boronski and Nieminen 1985):

A= mrZe [ nn(rv(r) & @)

where . is the classical electron radius, c the speed of light, n(r) and |+, ()|? the
electron and the positron density and () an enhancement factor which is related
to the e~—e* pair correlation function g(r,r') by

v(r) = g(r,r) ()

The enhancement factor ~ tested in this work has been proposed by Jarlborg and
Singh (1987) for 2D ACAR calculations in transition metals. It is obtained by solving a
two-body problem (a positron and an electron) in a local scheme. The two particles
are considered as interacting inside a sphere of radius », (depending on the local
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density). The value of r, defines the mean radius of an exchange—correlation hole
around the electrons. The e~—-et interaction s then described in the LDA as an
impurity problem defined inside a Wigner—Seitz sphere of radius »,. Previously, the
reduced mass p of the system has been treated as a free parameter. Here we take
the natural choice x = 1/2. This leads to -y-values that are close to the improved
Kahana solutions calculated by Rubaszek e al (1984) in the case of the homogeneous
electron gas.

1g forre
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L

Figure 1. The enhancement factor < as a function of the electron-gas parameter ry for
the three different models presented in the text. Short-dashed line: Brandt-Reinheimer
formula. Dashed line: Boronski-Nieminen formula. Solid line: Jarlborg—Singh approach.

In figure 1 we compare the Jarlborg-Singh (Js) enhancement factor v(r,) with
that obtained using the Brandi-Reinheimer (BR) and the Boronski-Nieminen (BN)
formulae. The latter two ensure the proper behaviour for the positronium limit
(r, — o). This is not the case for the Js approach which was initially conceived
for the density range of transition metals and this explains some shortcomings at low
densities (see below). However, the method is sufficiently general to allow further
improvement. Near r, = 2 all the models predict almost the same result. For smaller
r -values (corresponding to core densities), the BR curve is much higher than the
others. This may explain why the use of this formula requires scparate tratement of
the core states in order to fit the experimental data (Puska and Nieminen 1983).

After the electron density is known, the potential seen by the positron is con-
structed as

VE(r) = V() + Ve(r) ©

where V. is the potential for a positron as a test charge and where V, is the
correlation potential describing the positron perturbation. The correlation potential
represents the electronic polarization due to the positron impurity and can be written
via the Hellmann-Feynman theorem (Hodges and Stott 1973) as

! n 4 -
Vi(r) = - / az [ W)(g[(:fé[z) 1) ”
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where n()(g{r,v,Z) — 1) is the screening cloud density around a positron with
fractional charge Z, When V is included in our calculations we use the parametriza-
tion proposed by Boronski and Nieminen (1985). In the LDA picture the e~-e*
(Boronski and Nieminen 1985) and the electron—electron (Vosko et al 1980) corre-
lation potentials vary slowly in the region of valence electrons. This would be also
the case in a non-local density theory since the effect of the non-locality is to aver-
age n(r) over the region of the screening cloud. Therefore in simple materials the
positron wave function shape is mainly determined by the repulsive interaction with
the positive ion charge and the polarization effects due to the positron play only a
minor role. A similar conclusion was reached by Pennetta and Baldereschi (1989) in
Si using a different approach.

The self-consistent calculation of the electronic structure has been performed us-
ing the LMTO method. The potentials and the charge densities are spherical averages
inside Wigner—Seitz spheres centred both at nuclei and, in the case of open struc-
tures, at interstitial sites (the so-cailed empty spheres). The electron charge density
is evaluated self-consistently and relativistic effects, except spin-orbit coupling, are
always included for the valence states. The core states are fully relativistic and, in
achieving self-consistency, the core states are not frozen. The positron states are cal-
culated using the same LMTO method. The positron potential is taken as the inverse
of the electron Coulomb potential, except for in some test cases where the LDA V
is used. The positron is assumed to be thermalized when annihilating and its wave
function is then calculated only at & = 0. Previously Singh and Jarlborg (1985) had
applied LMTO for calculations of positron states in bulk materials. They showed that
this method describes well the momentum distribution in the first Brillovin zone (BZ)
but that for the Umklapp processes an overlap correction is needed. In simple met-
als, comparing positron wave functions for different potentials (with and without the
corrclation term) shows minor differences, meaning that the positron wave function
is mainly determined by the repulsive interaction with the nuclear charge. However,
in CoSi, Garreau et al (1991) have observed that when the potential contains the
correlation term then the empty sphere loses a significant amount of charge. The
positron charge transfer seems too drastic for an improvement and this is confirmed
by our lifetime calculations (see below). Thus our conclusion is that with the 1LMTO
method, e~-e* correlation potential may give some incorrect charge transfer from
empty to atomic spheres in the case of compounds. The effect of the ¢~-e™* corre-
lation potential has also been studied with FLAPW (full potential linear APW) method
by Singh et @/ (1989) in the copper oxides.

In the present lifetime calculations all electrons are treated in the same way and
the 53 LDA enhancement factor ~v(r. (r)) is used. For previous comparison with
2D ACAR experimental resulis (Jarlborg and Singh 1987, Garreau et al 1991), the
dependence on the reduced mass ¢ (of the e”—e* system) has been tested without
a definite answer being obtained. Here we have taken g = 1/2 which is the natural
choice for interactions between two free particles of equal mass. Using u = 1 gives
lifetimes that are much too small. For instance in 3d transition metals the lifetimes
cajculated using ¢ = 1 amount to about 35 ps, without significant variation. This
corresponds to values three or four times smaller than those from the experiment.
So large a disagreement js not observed in a 2D ACAR amalysis.

Our lifetime calculations are similar to those (also using LMTO formalism) tested
by Puska er al (1986) in Al, Si and GaAs for bulk and vacancy positron lifetimes.
However, these authors have divided the total annihilation rate into two components
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(due to valence and core electrons), following the prescription given by Puska and
Nieminen (1983). This requires the use of the BR enhancement factor for valence s
and p electrons and of a constant factor v = 1.5 for core and d valence electrons
(in the case of transition metals). Jensen (1989) has shown that it is not necessary to
treat core and valence electrons separately and has given a prescription where the BN
LDA enhancement factor is used. His calculated positron lifetimes has been obtained
using non-self-consistent electron densities. Very recently Puska (1991} has used the
same prescription with LMTO self-consistent electron structures, but in the frozen-core
approximation.

3. Resuits and discussion

The lifetimes calculated in several bulk materials are presented in table 1 together
with the corresponding experimental values collected by Seeger et al (1989), together
with those for Ce (Boring e al 1983), CoSi, (Garreau et a/ 1991), MgO and NiO
(Forster ef al 1989). For the calculated values, both Js and BN enhancement factors
are used. In order to get a uniform picture of our results, we give in this table only
the lifetimes obtained without including the correlation potential of Boronski and
Nieminen as discussed above. The overall agreement between experiment and theory
is good, particularly when considering that these calculated values result from a fully
ab initio, all-electron approach.

The best results for the JS factor concern the 3d transition metals (V, Cr, Fe, Ni),
the noble metals (Cu, Ag, Au) and metals with filled d shells (Zn, Pb). Both 1S and
BN calculations predict that Nb (4d) and Ta (5d) positron lifetimes should be longer
than the V (3d) one, but this effect is not confirmed by the experiment. We notice
a similar discrepancy for Cr (3d) as against Mo (4d) and for Ni (3d) as against Pd
(4d).

The disagreement exhibited by the alkali metals is much more pronounced and is
explained by their very low electronic density. At these densities the IS method over-
estimates the Coulomb cusp near the positron (see figure 1), leading to annihilation
rates that are much too high. This effect becomes more and more dramatic when
going from Li to Cs (i.e. to lower electronic densities).

We have compared the Js and BN lifetime values with the corresponding ones (still
in the LDA) obtained by applying to all the electrons the IPM (v = 1) and the BR
enhancement. This is illustrated in table 2 by the results obtained for Cs (alkali), V
(3d transition metal), Pd (4d), Pt (5d) and ~-Ce (4f rare earth). This table reflects the
differences noted in the enhancement curves of figure 1. It also shows the influence of
the LDA correlation potential V: the lifetimes calculated by including the correlation
potential are systematically lower than when it is neglected. When we consider the
positron wave fonction obtained with V. # 0 and the BN enhancement factor, our
calculated lifetimes compare well with those of Jensen (1989), who used a non-self-
consistent method. The corresponding values of Puska (1991), who determinated
the valence states self-consistently but with a frozen core, agree better with the
experiment. Recently, Daniuk et af (1991) showed that the core positron annihilation
characteristics can be sensitive to various details of the electron and positron models.
Moreover the effect of the self-consistency should be more appreciable in compounds
where important charge transfers occur, rather than in simple metals.

Coming back to table 1, one can notice the good agreement between experimental
and calculated lifetimes for Al and Pb. In contrast, the calculations fail for Ce. The
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Table 1. Bulk positron lifetimes (in ps) calculated for different materials using the
Jarlborg-Singh (J5) and the Boronski-Nieminen (BN) approach together with the corre-
sponding experimental values (Expt). The experimental values are from Seeger ef af
(1989} or * Boring et of (1983}, ® Garreau et ai (1991), and © Forster et al (1989).
The crystal structure and the volume per atom used in the calculations (normalized to
the Bohr's volume) are also given. No electron—positron correlation potential has been
included in the calculations.

Volume @9

Element  Structure  per alom  J§ BN Expt.
Li BCC 340 281 299 291
Na BCcC 60.7 287 328 338
K BCC 1149 271 374 397
Rb BCC 140.1 266 383 406
Cs BCC 177.8 246 394 418
v BOC 224 128 115 130
Cr BCC 19.2 112 99 120
Fe BCC 189 113 101 106
Ni FCC 17.5 103 96 110
Cu FCC 19.0 119 107 1i0
Zn Hce 24.2 146 133 148
Nb BCC 29.0 134 121 119
Mo BCC 252 117 104 103
Pd FCC 235 115 102 96
Ap FCC 275 136 123 131
Ta BCC 29.1 128 116 116
W BCC 25.5 111 9 105
P1 FCC 243 107 94 99
Au FCC 272 122 109 117
Al FCC 26,7 174 163 163
Pb FCC 414 194 184 194
a-Ce FoC 45.7 180 171 232
y-Ce FCC 554 208 197  235*
C Diamond 2.1 101 28 115
Si Diamond 323 207 202 219
Ge Diamond 3565 211 209 230
@-Sn Diamond 55.0 231 245 289
GaAs ZnS 36.1 211 211 231
GaP ZnS 326 202 197 223
CoSiz 20.7 152 141 i55®
MgO NaCl 151 134 121 155¢
NiO NaCl 149 119 107 110¢

explanation is probably related to the difficulties encountered in the band methods
in describing this rare-earth element. In the light of LMTO calculations and 2D ACAR
measurements in y-Ce, Jarlborg er a (1989) proposed that the position of the f states
relative to the Fermi Jevel should be different from what is obtained in LDA.

In the case of semiconductors, the experimental lifetimes are 10 to 20 ps higher
than the calculated values. This could be corrected to some extent if gap corrections
were taken into account: Puska et al (1986) predict an increase of about 10 ps for
the lifetimes calculated including the effect of the gap. In the open part of the unit
cell the diamond structure contains two empty spheres whose density decreases with
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Table 2. The Jarlborg—Singh (5) and Boronski-Nieminen (BN) lifetime values {in ps}
are compared with the corresponding ones (still in the LDA) obtained by applying to all
the electrons the 1PM (v = 1) and the Brandt—Reinheimer (BR) factors. For the 15 and
BN cases, the influence of the Boronski and Nieminen LDA comrelation potential V: is

shown.
Cs v Pd Pt v-Ce

IPM 5466 359 301 273 861
BR 401 106 92 85 196
BN 394 115 102 94 200
BN and V. #£ 0 383 113 100 93 194
Js 246 128 115 107 208
Jsand VL 30 245 126 113 105 204
Experiment 418 130 86 99 235

increasing unit cell volume. As for alkali metals, the annihilation rate calculated by
Is is overestimated in low-density regions (r, > 3). This is illustrated by the case of
a-Sn which is a metal of low density in the interstitial region and for which the BN
approach is more appropriate than the 15 one. On the other hand diamond is at the
high-r, limit and the Js factor gives a good result.

Concerning the metal oxides, we notice a good agreement for NiQ, but in the
case of MgO a gap correction seems to be needed. To end the overview of table 1, we
notice the good result obtained for CoSi, when the Js factor is used. In this compound
the silicon atoms form a diamond-like lattice, with Co on one of the two empty sites.
Including the LDA correlation potential V, for the positron drastically modifies the
calculated lifetime: + falls from 155 ps to 119 ps. As we mentioned previously, this
effect is due to the fact that the correlation potential drastically reduces the amount
of positron charge in the empty sphere. Calculations with different reduced masses in
the Js approach have already been confronted with the corresponding experimental
2D ACAR results (Garreau ef al 1991). As regards lifetime (r = 30 ps when using
# = 1}, the 2D ACAR analysis favours the enhancement factor obtained with a reduced
mass ¢ = 1/2, But in 2D ACAR the discrimination is not so clear.

As the experimental lifetimes of table 1 have been measured at different tem-
peratures, we have estimated the influence due to the volume variations on the =
calculated by Js . This is shown in figure 2 where the lifetime values calculated for V,
diamond and Ce are reported as functions of the lattice parameter. We deduce an
increase of lifetime of about 1 ps for V over a 300 K temperature range and even
less for diamond. A similar study has been reported by Gupta and Siegel (1977) for
Al This value of 1 ps is comparable to the time needed by the positron to thermalize
(Perkins and Carbotte 1970). Therefore if there is a small difference between the
effective lattice parameter and the one used in the calculation, the resulting error
remains within the experimental uncertainty. It is quite satisfactory to see the rather
small spread of different calculations of 7 in high-density materials. The results
of Jensen (1989), Puska (1991) and our results (using BN or JS enhancement) give
acceptable values in view of experimental uncertainty in .

The calculations for Ce have been motivated by the fact that in this element
an isostructural y-¢ phase transition, accompanied by a large (~ 18%) volume
contraction, occurs for temperatures lower than 100 K (at atmospheric pressure) or
for pressures higher than 8 kbar (at room temperature). The calculations predict a



7638 B Barbiellini et al

220_"""‘1!/\/||||i

200 T e e e e

180 [
160 |- =
140 [~ =
20 [ V . -
C /V ]
100 [~ ]
AV B Loy ]
8056 60 7.0 Y 9.0 10.0

lattice parameter (a.u.)

lifetime (ps)

Figure 2. Bulk lifetimes calcelated in the Jarlborg-Singh approach for V| diamond and
Ce as a function of the lattice parameter a, At room temperature the values of a used
in the calculations and represented by a square on the graph are 5.72 for V, 6.73 for
diamond, 9.15 for o-Ce and 9.75 for +-Ce (atomic units). The experimental values are
indicated by asterisks for V and diamond. In the case of Ce, the cxperimental values
fall outside the figure and it is not yet clear whether the - o tramsilion can be seen
experimentally from the positron annihilation lifetime.

significant effect on the lifetime due to the volume contraction alone (see table 1).
Experimental values reported by Boring et a/ (1983) have shown a constant mean
lifetime of 233 ps in both phases. These authors conclude that positron annihilation
is insensitive to the electronic 4— o transition in Ce. This conclusion is, however, in
conflict with the results of Gustafson et af (1969) and of Bharathi er o/ (1987) who
found a lifetime in «-Ce about 8% shorter than in ~-Ce.

4, Conclusion

We have computed bulk lifetimes in different materials using the self-consistent LMTO
method. In order to include e~—e* correlation effects in the calculation of the
annihilation rates, we have considered the enhancement factor calculated within the
LDA proposed by Jarlborg and Singh (1987). This enhancement factor has been
applied identically to all electrons (valemce and core), making the approach very
general. The motivation of this work was to test the 7S model with the aim of being
able to apply it confidently to 2D ACAR analysis. The result is that these enhancement
factors can be used for rather dense metallic systems using ¢ = 1/2. The question of
whether a reduced mass ;2 = 1 or ¢ = 1/2 shouid be used in the determination of the
enhancement factor has been unambiguously answered by these lifetime calculations,
which was not the case with ACAR results.

For high-density systems (in particular for 3d transition metals, CoSi, and dia-
mond) the agreement between the calculated lifetimes and the corresponding exper-
imental values is better when the JS enhancement factor is used. The BN approach is
certainly more appropriate for low-density systems like the alkali metals. In view of
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these results one should obtain the best overall agreement by always using the lowest
enhancement factor v(r,) = min(v;5(r,),Ygn(r.)}. In this way the high-density
factors of 1s would be replaced at low density by the BN factors, thus ensuring the
correct positronium limit. Such semi-empirical calculations are under way and will be
presented elsewhere (Barbicllini er al 1991).

In Ce the experimental situation is not yet clear and further theoretical im-
provements for correlations of f electrons are also needed. The results obtained in
semiconductors could be improved by inciuding gap corrections in the calculations
as suggested by Puska et al (1986). The lifetimes obtained in CoSi, and in NiO are
encouraging for further ab initio calculations in more complicated materials like the
copper oxides (Jarlboig et al 1991).
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